Course Code: EE-813

Title: Computational Pathology

Credit hours: (3-0)

1. <u>Objectives</u>. Oncology and Pathology Informatics is a developing discipline that focuses on the management and analysis of clinical and research oncology and pathology data using modern computing and communications techniques. The field includes the components of Medical Informatics and Bioinformatics that relate to clinical oncology and cancer research. The aim of this course is to provide an indepth coverage of the advanced techniques used in this area and familiarize students with the latest research trends in the area.

2. <u>Text Books:</u> No specific text book will be followed. Few reference books have been mentioned at para 5 below.

3. <u>Course Outline</u>

Topics	Periods
Introduction to Bioinformatics, imaging informatics, clinical	4
informatics, and public health informatics	
Introduction to Pathology	4
Anatomical Pathology	
General Pathology	
Hematopathology	
Medical Microbiology	
Medical Biochemistry	
Neuropathology	
Microscopy	8
Digital microscopy	
Digital Pathology	
Remote robotic microscopy	
Whole slide imaging	
Standards in Laboratory Information Systems (LIS) and imaging systems.	2

Pathological image analysis	20
Color segmentation	
Nuclear segmentation	
Feature Extraction	
Pattern recognition / classification	
Synthetic images	
CAD & Clinical Decision support systems	2
Case study Renal cell carcinoma grading / classification	6
system	
Total	46

4. <u>Course Outcomes:</u>

By the end of the course, each student will

- be able to identify anatomical / pathological features, noise and artifacts in images.
- be able to choose an appropriate image processing technique for a given dataset.
- be able to extract salient features from the images
- be able to select and apply appropriate classification methods to the extracted features
- have an appreciation of the challenges posed by the field of computational pathology, identify appropriate research areas to pursue and address these challenges.

5. <u>Recommended Reading</u>

- Pathology Informatics: Theory & Practice, Liron Pantanowitz, MD
- Practical Pathology Informatics, John H. Sinard MD, PhD